Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data
نویسندگان
چکیده
We study the cubic defocusing nonlinear Schrödinger equation on R4 with supercritical initial data. For randomized data in Hs(R4), we prove almost sure local wellposedness for 17<s<1 and scattering 57<s<1. The randomization is based a unit-scale decomposition frequency space, angular variable, – result an additional physical space. employ new probabilistic estimates linear flow data, where effectively combine advantages of different decompositions.
منابع مشابه
Almost Surely Local Well-posedness of the Cubic Nonlinear Schrödinger Equation below L²(t)
We consider the local well-posedness of the periodic cubic nonlinear Schrödinger equation with initial data below L(T). In particular, we prove that it is locally well-posed almost surely for the initial data in the support of the Gaussian measures on H(T) for each s > − 1 8 .
متن کاملGlobal Well - Posedness and Scattering for the Energy - Critical Nonlinear Schrödinger Equation In
We obtain global well-posedness, scattering, and global L10 t,x spacetime bounds for energy-class solutions to the quintic defocusing Schrödinger equation in R1+3, which is energy-critical. In particular, this establishes global existence of classical solutions. Our work extends the results of Bourgain [4] and Grillakis [20], which handled the radial case. The method is similar in spirit to the...
متن کامل6 Global Well - Posedness and Scattering for the Defocusing Energy - Critical Nonlinear Schrödinger Equation in R
We obtain global well-posedness, scattering, uniform regularity, and global L6t,x spacetime bounds for energy-space solutions to the defocusing energy-critical nonlinear Schrödinger equation in R × R. Our arguments closely follow those in [11], though our derivation of the frequency-localized interaction Morawetz estimate is somewhat simpler. As a consequence, our method yields a better bound o...
متن کاملSome Local Wellposedness Results for Nonlinear Schrödinger Equations below L
In this paper we prove some local (in time) wellposedness results for non-linear Schrödinger equations ut − i∆u = N (u, u), u(0) = u0 with rough data, that is, the initial value u0 belongs to some Sobolev space of negative index. We obtain positive results for the following nonlinearities and data:
متن کاملExistence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrödinger equation
We revisit the topic of the existence and azimuthal modulational stability of solitary vortices (alias vortex solitons) in the twodimensional (2D) cubic–quintic nonlinear Schrödinger equation. We develop a semi-analytical approach, assuming that the vortex soliton is relatively narrow, which allows one to effectively split the full 2D equation into radial and azimuthal 1D equations. A variation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications
سال: 2023
ISSN: ['1873-5215', '0362-546X']
DOI: https://doi.org/10.1016/j.na.2022.113204